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Abstract We consider a totally asymmetric exclusion process on the positive half-line.
When particles enter the system according to a Poisson source, Liggett has computed all
the limit distributions when the initial distribution has an asymptotic density. In this paper
we consider systems for which particles enter according to a complex mechanism depending
on the current configuration in a finite neighborhood of the origin. For this kind of models,
we prove a strong law of large numbers for the number of particles which have entered the
system at a given time. Our main tool is a new representation of the model as a multi-type
particle system with infinitely many particle types.

Keywords Particle systems · Exclusion process · Coupling methods

1 Introduction

The simple exclusion process η. = (ηt )t≥0 on a countable space S, with random walk kernel
p(.), is a continuous time Markov process on X := {0,1}S . For a configuration η ∈ X, we
say that the site x is occupied (by a particle) if η(x) = 1, and is empty if η(x) = 0. A particle
“tries” to move from an occupied site x to an empty site y at rate p(x, y), or in an equivalent
way, waits for an exponential time of parameter 1 and then chooses a site y randomly with
probability p(x, y) and “tries” to jump on y. If the site y is already occupied, the jump is
cancelled and the particle stays at x, otherwise it jumps to y. In this way, there is always at
most one particle at any given site. Formally, the exclusion process η. is defined as the Feller
process with generator

�f (η) :=
∑

x,y∈S

p(x, y)η(x)(1 − η(y))[f (ηx,y) − f (η)], (1)
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for all cylindrical functions f , where

ηx,y(z) :=
⎧
⎨

⎩

η(y) if z = x,

η(x) if z = y,

η(z) otherwise.

A natural question is to describe the set of invariant probability measures I , which is the
set of probability measures μ on S such that, if η0 ∼ μ then for all t ≥ 0, ηt ∼ μ. These
measures are characterized by the equations:

∫
�f μ(dη) = 0,

for any cylindrical functions f (see e.g. [5] for a review). We denote by Ie the set of extreme
points of I . In the case S = Z, the set of extremal, translation-invariant stationary measures
is exactly the set of translation-invariant Bernoulli product measures on Z (see [4]).

In this paper, we consider the case S := Z
∗+ and p(x, x + 1) := 1, i.e., the totally asym-

metric nearest neighbor case. In Z
∗+, one has to add some boundary mechanism to make the

model non trivial. The simplest way to do this is to add a particle reservoir at site 0 with
a certain density λ > 0. This means that a new particle is created at site 1 according to a
Poisson process with rate λ when this site is empty. We call the model on Z

∗+ TASEP(λ),
and we denote by �λ its generator and by Sλ(t) its semi-group:

�λf (η) := λ(1 − η(1))[f (η1) − f (η)]

+
∞∑

x=1

η(x)(1 − η(x + 1))[f (ηx,x+1) − f (η)], (2)

for all cylindrical functions f , where

η1(z) :=
{

1 − η(1) if z = 1,

η(z) otherwise.

In (2) we see two parts for the generator: one is due to the boundary mechanism and we will
call it the boundary part; the other one, which has the form given by (1) for S = Z

∗+, is due
to the exclusion process and we will call it the bulk part.

Let us introduce some notation. In the following, we denote by νλ the product measure
on {0,1}Z

∗+ with density λ and by θ the shift. θ acts on configurations η ∈ X by

θη(x) := η(x + 1), ∀x ∈ Z
∗
+,

on functions f : X → R by

θf (η) := f (θη), ∀η ∈ X,

and on measures μ on X by

∫
f dθμ :=

∫
θf dμ, ∀f ∈ L1(μ).

For a measure μ on S and f ∈ L1(μ), we will denote 〈f 〉μ := ∫
f dμ.
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We are interested in the asymptotic behavior of the distribution when t goes to infinity.
For this model, we have a good understanding about what happens at equilibrium. Indeed,
Liggett has shown in [3] the following ergodic theorem, which gives the limit measure for
an initial measure with a product form and an asymptotic density:

Theorem 1.1 (Liggett [3]) Let π be a product measure on Z
∗+ for which ρ :=limx→∞〈η(x)〉π

exists.

If λ ≥ 1

2
then lim

t→∞ πSλ(t) =
{

μλ
ρ, if ρ ≥ 1

2 (bulk dominated),

μλ
1
2
, if ρ ≤ 1

2 (maximum current).

If λ ≤ 1

2
then lim

t→∞ πSλ(t) =
{

μλ
ρ, if ρ > 1 − λ (bulk dominated),

νλ, if ρ ≤ 1 − λ (boundary dominated),

where the μλ
ρ ’s, for ρ ≥ 1

2 , are stationary measures and asymptotically product with den-
sity ρ, i.e., limx→∞ θxμλ

ρ = νρ (in a weak sense with test functions f ∈ C(X,R)). We also
have μλ

λ = νλ.

To describe the set of invariant probability measures in the cases S = Z and S = Z
∗+,

Liggett uses that the Bernoulli product measures are invariant and for these measures one
can make explicit computations. In this paper, we study Markov processes with no invariant
product measure. We consider a TASEP on Z

∗+ for which the boundary rate depends on the
current configuration. We limit ourselves to finite range boundary mechanisms, i.e., systems
for which there exist some R ∈ Z

∗+ such that the boundary part of the generator vanishes
on every cylindrical function with support in {R + 1, . . .}. This idea was first introduced by
Großkinsky in Chap. 3 of his PhD Thesis [1] where he defines the following Feller process:

�f (η) :=
∑

x∈Z
∗+

η(x) (1 − η(x + 1))
[
f (ηx,x+1) − f (η)

]

+
∑

ξ∈XR

dη|SR
,ξ

[
f (ξ ∪ η|cSR

) − f (η)
]
, (3)

for all cylindrical functions f where SR := {1, . . . ,R}, XR := {0,1}SR , η|SR
and η|cSR

are
the configuration η restricted to SR and cSR = Z

∗+\SR respectively, ξ ∪ η|cSR
is the natural

concatenation of configurations on SR and on cSR , and (dξ,ξ ′)ξ,ξ ′∈XR
are non-negative rates.

Assuming the existence of an invariant measure which is product outside of the box
{1, . . . ,R} with a non-trivial density leads to relations which the boundary rates have to
satisfy—we will refer to such models as almost classic. These are still within the reach of
Theorem 1.1, at least for suitable choices of λ and ρ. From now on, we will assume that at
least one of these relations is not satisfied by our boundary mechanism.

Remark The reason for which we only treat the finite range case is that when we are not in
this case, pathological things can occur. For example, consider the following dynamic with
a non-local boundary mechanism. Define the asymptotic density of a configuration η ∈ X

by ρ(η) := lim infx→∞ 1
x

∑x

i=1 η(i); we consider now a TASEP on Z
∗+ for which the rate of

apparition of a particle in site 1 is ρ(η) where η is the current configuration. More formally,
the boundary part of the generator is

ρ(η)(1 − η(1))[f (η1) − f (η)].
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In this example, every mixture of Bernoulli product measures is invariant for the process.
Admittedly this case is too extreme; probably, suitable decay of dependency would create a
behavior similar to the finite dependency case.

For this generalized boundary mechanism, we will not have an exact solution as for the
TASEP(λ). Indeed, one can check that this process is not almost classic and then does not
have any invariant measure which is of product form. Our approach is to study the number
of particles which have entered the system by time t . We will see that it grows linearly with
an almost sure speed equal to the stationary current j∞ := μ∞{η ∈ X : η(1) = 1, η(2) = 0}
for an invariant measure μ∞. Define ρ∞ as the root of ρ(1−ρ) = j∞ in [0,1/2[. We believe
that the process has a stationary measure which is asymptotically product with density ρ∞;
but we are still unable to prove it.

The rest of the paper is organized as follow: in Sect. 2 we give a construction of the
process defined above using a graphical representation similar to that introduced by Har-
ris [2]. We also introduce the basic coupling technique which is the main tool used in the
paper; in Sect. 3 we give some general results on the asymptotic behavior of the TASEP with
complex boundary mechanism. In particular, we show that, starting from the empty config-
uration, the process converges in distribution to an invariant ergodic measure μ∞; finally,
in Sect. 4 we study a particular example: take a TASEP(λ) on Z

∗+ and add a source (inde-
pendent of everything) with density ε > 0 which is activated only when site 2 is occupied.
For this model, let Nt be the number of particles which have entered the system between 0
and t . Then the main result of this paper is the following strong law of large numbers:

Theorem 1.2 Let 0 ≤ λ < 1
2 , ε > 0. Then starting from μ∞,

lim
t→∞

Nt

t
= λ(1 − λ) + λ(1 − λ)p(λ)ε + o(ε),

with probability one, where p(λ) is a positive constant (depending only on λ) for which we
give a natural probabilistic interpretation.

It should be noted that this particular choice of boundary mechanism is rather arbitrary,
and that our method is robust enough to be used in a much larger generality. However, the
notations which would be needed would be much more tedious, while providing very little
additional insight into the model—so we choose to limit ourselves to one representative
case.

2 The Harris Construction

We will use the method developed by Harris [2] to construct our process. Let

N := (
Nx, Nη,η′ ;x ∈ Z

∗
+, η, η′ ∈ {0,1}{1,...,R}) ,

be a family of independent Poisson point processes on R
∗+ constructed on the same proba-

bility space (�, F ,P), such that the rate of the processes indexed by Z+ is 1 and the rate of
the process indexed by (η, η′) is dη,η′ ≥ 0. By discarding a P-null set, we may assume that

each Poisson point process in N has only finitely many jump times in every
bounded interval [0, T ], and no two distinct processes have a jump in common. (4)
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We denote

N0 :=
⋃

η,η′∈{0,1}{1,...,R}
Nη,η′ .

Fix T > 0 and η ∈ X. The process (ηt )0≤t≤T starting from η is now constructed as fol-
lows. Consider the following subgraph of Z+:

GT :=
{
{x, x + 1} : x ≥ R, Nx ∩ [0, T ] �= ∅

}

∪
{
{x, x + 1} : x ∈ {0, . . . ,R − 1}

}
.

It is easy to see that every connected component of GT is almost surely finite. Let �0 be the
subset of � such that (4) and the above condition hold for all T ≥ 0. Then we have �0 ∈ F
and P[�0] = 1. We consider now only ω ∈ �0. For every connected component C of GT , the
set (

⋃
x∈C Nx) ∩ [0, T ] is finite so its elements can be ordered chronologically τ1 < · · · < τn

and we need only to describe the action of each of them. We start with the configuration η:

ηt (x) := η(x)

for all x ∈ C and 0 ≤ t < τ1.
Suppose that the process is constructed on C for 0 ≤ t < τk and k ∈ {1, . . . , n}. Then:

• if τk ∈ Nξ,ξ ′ and if ητ−
k

|SR
= ξ then ητk |SR

:= ξ ′ and ητk (x) := ητ−
k
(x) for all x ∈ C\SR ,

• if τk ∈ Nξ,ξ ′ and if ητ−
k

|SR
�= ξ then ητk (x) := ητ−

k
(x) for all x ∈ C ,

• if τk ∈ Nx and ητ−
k
(x)(1 − ητ−

k
(x + 1)) = 1 then ητk

:= (ητ−
k
)x,x+1 on C ,

• if τk ∈ Nx and ητ−
k
(x)(1 − ητ−

k
(x + 1)) �= 1 then ητk

:= ητ−
k

on C .

Finally, we put ηt := ητk on C for τk ≤ t < τk+1 if k < n and for τn ≤ t ≤ T if k = n. We
make the same construction on every connected component of GT and then let T go to
infinity to get the process (ηt )t≥0 for every ω ∈ �0.

The usefulness of such a construction is that, using the same Harris process, we can
construct two or more realizations of the process on the same probability space starting
from different initial configurations. We will refer to this coupling as the basic coupling.

3 The Attractive Case

Recall the usual definition of attractiveness (or monotonicity). Define a partial order on X

as follow:

η ≤ ξ iff ∀x ∈ Z
∗
+, η(x) ≤ ξ(x).

A function f on X is called increasing if η ≤ ξ implies f (η) ≤ f (ξ). This leads to the usual
definition of the stochastic monotonicity: μ1 ≺ μ2 iff 〈f 〉μ1 ≤ 〈f 〉μ2 for every increasing
function f . We say that a process on X is attractive (or monotone) if one of the following
equivalent statements hold:

for every increasing function f , S(t)f is also increasing for all t ≥ 0,

and

μ1 ≺ μ2 implies μ1S(t) ≺ μ2S(t) for all t ≥ 0.
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In this section, we consider the process with generator (3) and we assume the process
attractive.

3.1 The Stationary Measure

Proposition 3.1 Assume that the process is attractive (or monotone). We start from the
empty configuration and we denote by μt the distribution of the process at time t . Then, the
process (μt )t≥0 is stochastically increasing and converges to a measure μ∞ ∈ I , which is
the smallest invariant measure of the dynamic. Furthermore, μ∞ ∈ Ie and μ∞ is ergodic.

Proof Let 0 ≤ s < t . We have δ0 ≺ μt−s , where δ0 is the measure charging the empty con-
figuration. Thus by monotonicity of the process, we have δ0S(s) ≺ μt−sS(s), i.e., μs ≺ μt .
Hence, by monotonicity, μt converges weakly to an invariant measure μ∞.

For all ν ∈ I , we have δ0 ≺ ν, which implies that μt ≺ ν for all t ≥ 0, and then μ∞ ≺ ν.
Assume now that μ∞ = λν1 + (1 − λ)ν2, with ν1, ν2 ∈ I and λ ∈ ]0,1[. We have μ∞ =
λν1 + (1 − λ)ν2 � μ∞, thus ν1 = ν2 = μ∞ and μ∞ is extremal. Finally, by Theorem B52 of
[6], μ∞ is also ergodic. �

Proposition 3.2 θRμ∞ is stochastically dominated by the measure μ1
1/2 of Theorem 1.1.

Proof Define N ′ := (N ′
x, x ∈ Z+), where N ′

x := Nx+R . Then N ′ defines a TASEP (ξt )

on Z
∗+ with rate 1 of particle apparition in 1. By Theorem 1.1, starting from the empty

configuration, the distribution at time t converges to μ1
1/2. In this coupling, we have

ξt (x) ≥ ηt (x + R) almost surely for all t ≥ 0 and x ≥ 1. Thus the restriction of μ∞ to
{R + 1,R + 2, . . .} is stochastically dominated by μ1

1/2. �

3.2 Asymptotic Measures

Let us extend the measure μ∞ to a measure on {0,1}Z by

μ∞(A) := μ∞ {η ∈ X : η̃ ∈ A} , where η̃(x) :=
{

η(x) if x ≥ 1,

0 otherwise,

for all A in the product σ -field of {0,1}Z. By a slight abuse of notation, we still denote
this measure by μ∞. Let μk := θkμ∞ and consider any weak limit μ∞ of this sequence; let
ki ↑ ∞ such that:

lim
i→∞

μki = μ∞.

Proposition 3.3 The measure μ∞ is a translation invariant stationary measure for TASEP
on Z. Consequently, it is a mixture of Bernoulli product measures, i.e., there exists a proba-
bility measure σ on [0,1] such that

μ∞ =
∫ 1

0
νλσ (dλ).

Proof Let �e be the generator of the TASEP on Z. For any cylindrical function f :
{0,1}Z → R, let x ∈ Z

∗+ large enough such that supp θxf ⊂ {R + 1,R + 2, . . .}, where
suppf is the support of f . Thus θxf could be considered has a function on Z

∗+ and we can
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apply the generator � to this function. We get �θyf = �eθyf for all y ≥ x. But it is easy
to see that �e and θ commute, thus we have

∫
�θyf μ∞(dη) = 0 =

∫
θy�ef μ∞(dη) =

∫
�ef μy(dη).

Hence for i large enough, 〈�ef 〉μi = 0, which implies that 〈�ef 〉μ∞ = 0. This is true for
arbitrary f thus μ∞ is invariant for the TASEP on Z. We know that for this model we
have Ie = {νλ, λ ∈ [0,1]} ∪ {νn, n ∈ Z}, where νn = θnν0 and ν0 is the Dirac measure of the
configuration for which all the sites x ≥ 0 are occupied and all the sites x < 0 are empty
(see [4]). Using Proposition 3.2, since μ1

1/2 is asymptotically product with density 1
2 , μ∞

is stochastically dominated by ν1/2. Thus μ∞ is translation invariant and is a mixture of
Bernoulli product measures. �

3.3 A Strong Law of Large Numbers

Let μ be an invariant and ergodic measure for the process with generator given by (3). Fix
ξ0, ξ and ξ ′ three configurations on SR and consider

N(t) := �(Nξ,ξ ′ ∩ It ),

with It := {s ∈ [0, t] : ηs|SR
= ξ0}, where we denote by A the closure of a set A ⊂ R+. We

show a strong law of large numbers for N(t) which will be useful in the sequel.

Proposition 3.4 If η0 is distributed according to μ and if ξ ′ �= ξ0, then almost surely:

lim
t→∞

N(t)

t
= dξ,ξ ′μ

{
η ∈ X : η|SR

= ξ0

}
.

Proof Let

Tt :=
∫ t

0
1ηs|SR

=ξ0ds,

and

ψ(t) := inf {s ≥ 0 : Ts = t} .

Since μ is ergodic, Tt/t −→
t→∞ μ{η ∈ X : η|SR

= ξ0} almost surely. Let I := {t > 0 : ηt |SR
=ξ0}.

ψ : R
∗+ → I is a one to one map, since it is increasing, thus we can define M := ψ−1(Nξ,ξ ′ ∩

I ) and N ′(t) := �(M ∩ ]0, t]) the associated counting process. We have N ′(t) = N(ψ(t))

almost surely.

Claim: M is a Poisson point process with parameter dξ,ξ ′ .
Let τ̃0 := 0 and for i ≥ 1:

τi := inf{t > τ̃i−1 : ηt |SR
= ξ0}, τ̃i := inf{t > τi : ηt |SR

�= ξ0} and Ji = [
τi, τ̃i

]
.

(τi)i≥1 and (τ̃i)i≥1 are stopping times for the process (N ∩ [0, t]). To prove the claim we
need to distinguish two cases.
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Fig. 1 On the time interval [0,ψ(t)] we see the set Iψ(t) in grey. The total length of the grey part is t . The
stars are points of the process Nξ,ξ ′ . In this example, N ′(t) = 5

Fig. 2 In the first line, we see the time interval [0,ψ(t)]: the set Iψ(t) is in grey; the stars are points of the
process Nξ,ξ ′ . They are always at the end of intervals of Iψ(t) since they change the current configuration.
In the second line, we see the Poisson point process Nξ,ξ ′ viewed from Iψ(t), i.e., the set M ∩ ]0, t]

Case ξ �= ξ0: (see Fig. 1) In this case, the points of Nξ,ξ ′ ∩ I have no effect on the con-
figuration. Hence for each i ≥ 1, with the strong Markov property, τi and the length of Ji

are independent of Nξ,ξ ′ ∩ [τi,∞[. Consequently, conditionally to Ji , Nξ,ξ ′ ∩ Ji is a Poisson
point process with parameter dξ,ξ ′ . Again with the strong Markov property, (Nξ,ξ ′ ∩ Ji)i≥1

are independent conditionally to I . Hence, the claim follows.

Case ξ = ξ0: (see Fig. 2) In this case, each Mi := Nξ,ξ ′ ∩ Ji has, almost surely, at most 1
point, thus we have to argue in a different way. For i ≥ 1, let

σi := inf Nξ,ξ ′ ∩ [τi,∞[

and

σ ′
i := inf

⋃

ξ ′′∈XR\{ξ0,ξ ′}
(Nξ0,ξ ′′ ∩ [τi,∞[)

⋃

x∈{1,...,R}:
ητi

(x)=1,ητi
(x+1)=0

(Nx ∩ [τi,∞[).

The interpretation of σi and σ ′
i is simple: if σi < σ ′

i , then the time interval Ji ends with a
jump in Nξ,ξ ′ and Mi contains one point (Mi = {τ̃i}); if σi > σ ′

i , then the time interval Ji

ends with an other jump and Mi is empty. By the strong Markov property, the sequence
(σi)i≥1 is i.i.d. with distribution exponential with parameter dξ,ξ ′ . Furthermore, because of
the independence of the Poisson point processes in N , (σi)i≥1 and (σ ′

i )i≥1 are independent.
By construction, inf M =∑

i≤I min(σi, σ
′
i ), where I := min{i ≥ 1 : σi < σ ′

i }. Hence, using
basic properties of Poisson processes, it is easy to see that inf M is an exponential random
variable with parameter dξ,ξ ′ . Finally, using again the strong Markov property, the claim
follows.

Then, for every ε > 0, ψ(Tt ) ≤ t ≤ ψ(Tt + ε). Since N(t) is non-decreasing, we get
N ′(Tt ) ≤ N(t) ≤ N ′(Tt + ε). Consequently:

N ′(Tt )

Tt

Tt

t
≤ N(t)

t
≤ N ′(Tt + ε)

Tt + ε

Tt + ε

t
.

Since both sides converge to dξ,ξ ′μ{η ∈ X : η|SR
= ξ0} almost surely, it leads to the conclu-

sion. �
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Fig. 3 Particles enter with
additional rate ε when the site 2
is occupied

4 A Particular Case and the Multi-species Model

In this section, we are interested in a particular case of TASEP with a complex boundary
mechanism: let λ, ε > 0 such that λ + ε < 1

2 . Particles are created at site 1 with rate λ +
εη(2), where η is the current configuration and the bulk dynamic is the one of the TASEP.
This model has a generator given by:

�f (η) :=
∑

x∈Z
∗+

η(x) (1 − η(x + 1))
[
f (ηx,x+1) − f (η)

]

× (1 − η(1))(λ + εη(2))
[
f (η1) − f (η)

]
, (5)

for all cylindrical functions f on X. As it is explained in the introduction, the choice of
the model is rather arbitrary, and the methods that we use are quite robust (at least as long
as the system can be dominated by a Bernoulli product measure of intensity lower than
1/2—which is indeed the case here).

In this model, the range of the boundary mechanism is R = 2. The hypothesis ε > 0
implies that the process is monotone, thus we can define the smallest stationary measure
μ∞ = μ∞(λ, ε) of the model. Using the Harris representation, we can couple this process
with ηλ

. , a TASEP(λ), and ηλ+ε
. , a TASEP(λ + ε), in such a way that if ηλ

0 ≤ η0 ≤ ηλ+ε
0 then

for all t ≥ 0, ηλ
t ≤ ηt ≤ ηλ+ε

t . This proves that νλ ≺ μ∞ ≺ νλ+ε and then νλ ≺ μ∞ ≺ νλ+ε .

4.1 Some Estimates About the Particle Flux

Here we will see another way to see the process with generator given by (5). For any i ≥ 1,
let

Xi := {∞,1, . . . , i}Z
∗+ .

We define

�(i)f (η) := λ1η(1)≥2[f (η1→1) − f (η)]

+
i∑

j=2

ε1η(1)≥j+11η(2)=j−1[f (ηj→1) − f (η)]

+ ε1η(1)=∞1η(2)=i[f (ηi→1) − f (η)]

+
∞∑

x=1

1η(x+1)>η(x)[f (ηx,x+1) − f (η)], (6)

for all cylindrical function f : Xi → R, where

ηj→1(x) :=
{

j if x = 1,

η(x) otherwise,

for j ∈ {1, . . . , i}.
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Fig. 4 First class particles enter
with rate λ whatever is the
configuration in {2,3, . . .} and
second class particles enter with
rate ε if the site 2 is occupied by
a first class particle. Particles in
black are indistinguishable
particles (their class has no
influence on the rate of the source
in the current configuration)

We fix i ≥ 2 for the sequel. The new description is described in Fig. 4 and in the follow-
ing. We put the particles into a certain number of classes. For a configuration η ∈ Xi and for
a site x ∈ Z

∗+, the number η(x) designates the class of the particle at site x if it exists, i.e.,
if η(x) �= ∞, and is equal to ∞ if the site is empty. We use here another notation for empty
sites because it allows us to have a simpler expression for the generator and we can also
interpret holes as particles of class infinity. The evolution is the same as before, except that
if a particle of the k-th class (or of type k) attempts to jump on a site occupied by a particle
of the j -th class (or of type j ), then it is not allowed to do so if k ≥ j , and the particles
exchange positions if k < j . We say that a particle of class k ∈ {1,2, . . .} has priority over
all particles of classes greater than k. In this way, a particle of type k behaves as a hole for
particles of type j < k.

Now we will explain how we affect classes to the particles. First class particles enter the
system (at site 1) at rate λ. As they have priority over other particles, they are not affected
by them, so the process of first class particles is simply a TASEP(λ) on Z

∗+. Next, particles
of class 2 ≤ j ≤ i − 1 enter the system with rate ε, if the site 2 is occupied by a particle of
class j − 1 and with rate 0 otherwise. Finally, particles of class i enter the system with rate
ε if the site 2 is occupied by a particle of class i − 1 or i and with rate 0 otherwise. For each
configuration of the system, at most 2 types of particles are allowed to enter the system. We
can also remark that if we consider the process consisting with particles of class 1, . . . , i,
then it has the generator given by (5).

In terms of the Harris system, we define N the collection of the following independent
Poisson point processes on R

∗+: let (Nx, x ≥ 1) be Poisson point processes of rate 1; let
(N b

j , j ≥ 1) be Poisson point processes of rate λ for N b
1 and of rate ε for the others. In the

sequel, we consider holes as particles of class infinity. The mechanism is then the following:
if t ≥ 0 is a jump time of Nx and if at time t− we have η(x + 1) > η(x) (i.e., the particle
at x has higher priority than the one at x + 1), then the particles at x and x + 1 swap; if
t ≥ 0 is a jump time of N b

1 and if at time t− we have η(1) ≥ 2, then a first class particle
appears at site 1; if t ≥ 0 is a jump time of N b

j with 2 ≤ j ≤ i − 1 and if at time t− we have
η(1) ≥ j + 1 and η(2) = j − 1, then a j -particle appears at site 1; finally, if t ≥ 0 is a jump
time of N b

i and if at time t− we have η(1) = ∞ and η(2) ∈ {i − 1, i}, then an i-particle
appears at site 1.

We denote by S(i)(t) the semi-group corresponding to the generator �(i) and by (η
(j)
t )t≥0

the process of the j -th class particles for j = 1, . . . , i, i.e., η
(j)
t (x) := 1ηt (x)=j . The process
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is attractive, thus we can define μ(i)∞ as the weak limit of δ0S
(i)(t). As in Proposition 3.1,

this measure is extremal, ergodic and the smallest invariant measure of the system. For all
1 ≤ j ≤ i, we denote η̄

(j)
t := ∑j

k=1 η
(k)
t . Remark that the process (η̄

(i)
t )t≥0 is exactly the

process that we want to study, i.e., it has the generator given by (5). Furthermore, for all
j ≥ 1 the distribution of the process (η̄

(j)
t )t≥0 is the same for all i ≥ j + 1, i.e., the generator

of this process is independent of i since changing the value of i is equivalent to adding or
removing some particles with lower priority.

In order to compare the processes (η̄
(i−1)
t )t≥0 and (η̄

(i)
t )t≥0, we need to control the number

of particles of a given type in the system at a given time. Let N
(j)
t be the number of j -

particles which have entered the system between times 0 and t , and define

T
(j)
t :=

∫ t

0
η(j)

s (2)ds

and

T̃t :=
∫ t

0
η(1)

s (2)(1 − η(1)
s (1))ds,

for all j ∈ {1, . . . , i}.
T

(j)
t is the time spent by j -particles in site 2 during [0, t], and T̃t is the length of the

subset of [0, t] for which 2-particles can enter site 1 with rate ε (excepted if the site 1 is
already occupied by another 2-particle). The following lemma says that we have a uniform
control on the total time spent by a particular particle of type ≥ 2 at site 2. Let T

(j),k
∞ be

the total time spent in site 2 by the k-th particle of type j ≥ 2 which have entered the
system.

Lemma 4.1 There exists a constant Cλ ∈ ]0,+∞[, independent of ε, such that for all k ≥ 1
and all j ≥ 2 we have

E
[
T (j),k

∞
]≤ Cλ.

Proof Let Et be the event that, between times t and t + 1, a first class particle enters (or
tries to enter) the system, then jumps, if it is possible, to site 2, and finally another first class
particle tries to enter the system. We also assume that in Et there is no other jump time for
N1, N2 and N b

1 between 0 and t . In particular, if Et occurs and if there was a particle of type
greater or equal to 2 in site 2 at time t , then it has disappeared at time t + 1. q(λ) := P[Et ]
does not depend on t neither on ε and q(λ) > 0.

On the event {T (j),k
∞ > t}, there exists a time τ such that the k-th particle of type j is at

the site 2 and it has spent exactly time t in this site between 0 and τ . We have Eτ ⊂ {T (j),k
∞ ≤

t + 1}. Hence

P
[
Eτ |T (j),k

∞ > t
]≤ P

[
T (j),k

∞ ≤ t + 1|T (j),k
∞ > t

]
. (7)

But τ is a stopping time for the Markov process (η
(l)
t , l = 1, . . . , j)t≥0 and the event Eτ

depends only on the Poisson processes of the Harris system for times between τ and τ + 1,
so, conditionally to {τ < ∞}, Eτ has the same law as E0 by the strong Markov property.
Hence the left-hand side of (7) is equal to q(λ). Finally, we have

P
[
T (j),k

∞ > t + 1
]≤ (1 − q(λ))P

[
T (j),k

∞ > t
]
.
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The last inequality implies that there exist some deterministic positive constants a1, a2, de-
pending only on λ, such that almost surely and for all t ≥ 0 we have

P
[
T (j),k

∞ > t
]≤ a1e

−a2t .

The result follows with Cλ := ∫∞
0 a1e

−a2t dt . �

Finally, the following theorem gives the estimates that we need:

Theorem 4.2 For each 1 ≤ j ≤ i and k ≥ i, T
(j)
t /t converges almost surely to a determin-

istic value if the process starts under μ(k)∞ . Furthermore, for all ε < 1
2Cλ

, where Cλ is as in
Lemma 4.1, we have

lim sup
t→∞

N
(j)
t

t
≤ cj−1ε

j−1, lim
t→∞

T
(j)
t

t
≤ cj ε

j−1,

for 1 ≤ j ≤ i − 1, and

lim sup
t→∞

N
(i)
t

t
≤ 2ci−1ε

i−1, lim
t→∞

T
(i)
t

t
≤ 2ciε

i−1,

where (cj )j=1,...,i are constants (depending only on λ) such that c0 := λ(1 − λ) and cj :=
C

j−1
λ c0.

Proof We have seen that every μ(k)∞ is stationary and ergodic, so by the ergodic theorem, we
have almost surely

T
(j)
t

t
−→
t→∞ μ(k)

∞ {η ∈ Xk : η(2) = j} (8)

and

T̃t

t
−→
t→∞ μ(k)

∞ {η ∈ Xk : η(1) ≥ 2, η(2) = 1} . (9)

Since the distribution of the first class particles is νλ under every μ(k)∞ , the right-hand side
of (8) is λ if j = 1 and the right-hand side of (9) is λ(1 − λ). Using Proposition 3.4, N

(1)
t /t

converges to λ(1 − λ) almost surely.
Let

M
(2)
t := �

{
s ∈ N b

2 ∩ [0, t] : η(1)
s (2)

(
1 − η(1)

s (1)
)= 1

}
.

Then almost surely N
(2)
t ≤ M

(2)
t and applying Proposition 3.4:

lim sup
t→∞

N
(2)
t

t
≤ ελ(1 − λ) = lim

t→∞
M

(2)
t

t
. (10)

Now, we need to find an upper bound for limt→∞ T
(2)
t /t . First, we can remark that T

(2)
t

can be decomposed into two parts: the time spent by initial second class particles, i.e., parti-
cles present at time 0, denoted by T

(2)

t,1 , plus the time spent by the new second class particles

in site 2, denoted by T
(2)

t,2 . But, since T
(2)

t,1 is bounded by a random variable that is almost

surely finite, it is sufficient to study limt→∞ T
(2)

t,2 /t . Indeed, using λ + ε < 1/2, it can be
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shown that every initial second class particle has a probability uniformly bounded from be-
low by a positive constant, to never go behind its starting point (see [7]). Thus the number of
initial second class particles visiting the site 2 is finite and each of them spent a finite time
in this site as a consequence of Lemma 4.1.

As we have seen previously, μ(k)∞ ≺ νλ+ε . The idea is that since we know the number of
second class particles created up to time t , it is sufficient to bound the time spent in site 2
by one of them in the environment νλ+ε where it is slower. But there are some difficulties.
For example, at the moment where a second class particle is created, the environment in
{2,3, . . .} is not dominated anymore by a Bernoulli product measure with density λ + ε

because we know that a first class particle has to be in site 2. To avoid this problem, we will
use the following fact: if a particle of a class different than 1 is at site 2 at time t then it has a
positive probability (depending only on λ) to be out of the system at time t +1. This implies
Lemma 4.1 which says:

E
[
T (2),l

∞
]≤ Cλ, (11)

where Cλ is a constant. Take any β > ελ(1 − λ) and

τ := inf
{
t ≥ 0 : ∀s ≥ t,N(2)

s ≤ βs
}
.

We have that τ is almost surely finite by (10) and

T
(2)

t,2

t
1{τ≤t} ≤ 1

t

N
(2)
t∑

k=1

T (2),k
∞ 1{τ≤t} ≤ 1

t

�βt�∑

k=1

T (2),k
∞ 1{τ≤t}. (12)

Taking expectation in both sides, it leads to

E

[
T

(2)

t,2

t
1{τ≤t}

]
≤ 1

t

�βt�∑

k=1

E
[
T (2),k

∞ 1{τ≤t}
] ≤

(11)

�βt�
t

Cλ. (13)

Hence, by dominated convergence we have almost surely

lim
t→∞

T
(2)
t

t
= lim

t→∞
T

(2)

t,2

t
= lim

t→∞ E

[
T

(2)

t,2

t
1{τ≤t}

]
≤ βCλ. (14)

The above inequality is true for all β > ελ(1 − λ), thus we also have

lim
t→∞

T
(2)
t

t
≤ ελ(1 − λ)Cλ.

Let now c2 := Cλc1 and by induction, using exactly the same arguments, we have for all
1 ≤ j ≤ i − 1:

lim sup
t→∞

N
(j)
t

t
≤ cj−1ε

j−1,

and

lim
t→∞

T
(j)
t

t
≤ cj ε

j−1,

where cj := C
j−1
λ λ(1 − λ).
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Finally, let α := lim supt→∞ N
(i)
t /t . Doing the same computation as in (12), (13) and

(14), we get:

lim
t→∞

T
(i)
t

t
≤ αCλ.

Consequently,

lim
t→∞

T
(i−1)
t + T

(i)
t

t
≤ ci−1ε

i−2 + αCλ,

which implies as in (10):

lim sup
t→∞

N
(i)
t

t
= α ≤ (ci−1ε

i−2 + αCλ)ε.

Since ε < 1
2Cλ

, we have α ≤ 2ci−1ε
i−1 and

lim
t→∞

T
(i)
t

t
≤ 2ciε

i−1. �

Now, let N̄
(i−1)
t and N̄

(i)
t be the number of particles which have entered the system be-

tween 0 and t for the processes (η̄
(i−1)
t )t≥0 and (η̄

(i)
t )t≥0. We deduce from the above theorem

that

lim sup
t→∞

N̄
(i)
t − N̄

(i−1)
t

t
= lim sup

t→∞
N

(i)
t

t
= O(εi−1).

4.2 The Asymptotic Flux at the First Order

In this section, we consider the particle system with generator given by (6) for i = 3 (see
Fig. 5). In order to differentiate it from particle systems we will define below, we will now
refer to this system as the true process. In the previous section we have seen that in order to
compute limt→∞ N̄

(i)
t /t up to order ε, it is sufficient to compute this limit only for first and

second class particles. In other words, if N(j)
t denotes the number of new j -particles, i.e.,

the number of j -particles at time t which was not in the system at time 0, then:

lim sup
t→∞

N(1)
t + N(2)

t + N(3)
t

t
= lim sup

t→∞
N(1)

t + N(2)
t

t
+ o(ε),

= λ(1 − λ) + lim sup
t→∞

N(2)
t

t
+ o(ε).

Fig. 5 First class particles, in black, enter with rate λ whatever is the configuration in {2,3, . . .} and second
class particles, in grey, enter with rate ε if the site 2 is occupied by a first class particle
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In the following we denote by Nt , rather than by N(2)
t , the number of new second class

particles because there will be no possible confusion. The aim of this section is to prove
a law of large numbers for Nt and to compute the limit up to order ε. First we introduce
some notation. Let c > 0 such that λ + c < 1

2 and ε ∈ [0, c]. Consider the point process
N b

2 ∩ {t ≥ 0 : ηt (1) �= 1, ηt (2) = 1}, and denote its elements ordered chronologically by
τ e

1 < · · · < τe
i < · · · . By construction, at each time τ e

i , a second class particle tries to enter
the system. We denote by Xi(t) the position at time t of this particle, with the convention
Xi(t) := 0 if the corresponding particle is not in the system at time t . We define

τ s
i := inf{t ≥ τ e

i : Xi(t) = 0}, Si(t) := 1Xi(t)≥1, and Si := 1τ s
i
=∞.

Remark that there is a positive probability that τ s
i = τ e

i . This happens if ητe
i
(1) = 2. In this

case, Xi(t) = 0 for all t ≥ 0.
In order to have simpler estimates in the sequel, we consider the process (ηt )t≥0 on X3

starting with the measure μ(3)∞ (.|η(1) �= 1, η(2) = 1). Of course, the limit that we obtain in
this case is the same as the one we would get if we started from μ(3)∞ . Moreover, the estimates
of Theorem 4.2 also hold in this case. Indeed, the distribution of the process converges to
μ(3)∞ . In the sequel, we denote η̄t (x) := 1ηt (x)�=∞ the process with indistinguishable particles
associated to (ηt )t≥0.

Since νλ ≺ μ∞ ≺ νλ+c and the dynamic is monotone, we can make a basic coupling with
a TASEP(λ), denoted ηinf

. , and a TASEP(λ + c), denoted ηsup
. , such that:

• η
inf

0 has distribution νλ(.|η(1) = 0, η(2) = 1),

• η
sup

0 has distribution νλ+c(.|η(1) = 0, η(2) = 1),
• almost surely η

inf
t ≤ η̄t ≤ η

sup
t , for all t ≥ 0.

4.2.1 The Process Without Interaction

We define a new particle system with state space {0,1, (2, i)i≥1}Z
∗+ and the following gener-

ator:

�̄νf (η) := ν1η(1)�=1(f (η1→1) − f (η)) + ε1η(1)�=1,η(2)=1(f (η2→1) − f (η))

+
∞∑

x=1

1η(x)�=0,η(x+1)�=1(f (ηx,x+1) − f (η)), (15)

for all cylindrical function f , where

η1→1(z) :=
{

1 if z = 1,

η(z) otherwise,
(16)

η2→1(z) :=
⎧
⎨

⎩

(2,1) if z = 1 and η(1) = 0,

(2, i + 1) if z = 1 and η(1) = (2, i),

η(z) otherwise,
(17)

and

ηx,x+1(z) :=

⎧
⎪⎪⎨

⎪⎪⎩

ηx,x+1(z) if η(x) = 1,

0 if η(x) �= 1 and z = x,

(2, i + j) if z = x + 1, η(x) = (2, i) and η(x + 1) = (2, j),

η(z) otherwise,
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with the convention (2,0) := 0 (j can be equal to 0). We will refer to this process as the
process without interaction.

This particle system has the following description: there are two classes of particles;
first class particles perform a TASEP(ν); second class particles enter with rate ε if a first
class particle is in site 2 and with rate 0 otherwise; they have lower priority than first class
particles; and, contrary to the process of Sect. 4.1, second class particles are allowed to jump
on a site containing one or more second class particles. Once some particles (necessarily of
type 2) are on the same site at a given time, they will always jump together since they use the
same Harris system. Another possible choice would be to put a Poisson clock on particles
instead of sites. This would lead to the same asymptotic results.

To link our process to the above one, we proceed as follows. We construct a process
ξ inf
. on {0,1, (2, i)i≥1}Z

∗+ , with generator �̄λ, in such a way that the process ηinf
. defined

above is exactly the process of first class particles of ξ inf
. . Furthermore, at each time τ e

i , we
add a second class particle in ξ inf

. at site 1 and we denote by X
inf

i (t) its trajectory. This
particle will behave as a second class particle in the system with generator (15), i.e., it has
a lower priority than first class particles but it can jump on a site already occupied by an
other second class particle. As a consequence, we can remark that, contrary to Xi(τ

e
i ), we

have almost surely X
inf

i (τ e
i ) ≥ 1. By construction we almost surely have Xi(t) ≤ X

inf

i (t)

for all t ≥ 0. Indeed, ξ inf and η have the same first class particles and contrary to X
inf

i ,
the particle Xi is blocked by other second class particles thus it stays behind X

inf

i . In order
to bound from below the trajectory Xi(t), we now construct a process ξ sup on {0,1,2}Z

∗+

such that for all t ≥ 0, x ≥ 1, 1ξ
sup
t (x)�=0 = η

sup
t (x), by affecting the type 2 to particles of

ηsup
. entering at times (τ e

i )i≥1. In the same way, we denote by X
sup

i (t) their trajectory and
we have almost surely for all t ≥ 0, X

sup

i (t) ≤ Xi(t). We define analogously the quantities
N

inf
t , N

sup
t , τ

s,inf

i , τ
s,sup

i , etc.
Consider the following initial configuration: at time 0, first class particles are distributed

on Z
∗+\{1,2} according to νλ (the Bernoulli product measure with density λ), and we put one

first class particle in site 2 and one second class particle in site 1. We show in Proposition 4.6
below that this is exactly the distribution of the configuration η

inf

τe
i

for all i ≥ 1. Then first
class particles enter site 1 with rate λ and they have priority over the second class particle.
Two cases can occur: either the second class particle survives, or it dies. Let p(λ) be the
probability that the second class particle survives. p is a non-increasing function, p(0) = 1,
p( 1

2 ) = 0 and p(λ) > 0 for all λ < 1
2 . Indeed, for the last point, it can be shown that if

the second class particle survives, then it has a positive speed 1 − 2λ (see e.g. [7]). The
exact expression of p(λ) is unknown. However, simulations indicate that p(λ) = 1 − 2λ for
λ ∈ [0, 1

2 ]. We have by construction and with results of Sect. 4.2.2 below, P[Sinf

i = 1] = p(λ)

and P[Ssup

i = 1] = p(λ + c) for all i ≥ 1. Consequently, p(λ + c) ≤ P[Si = 1] ≤ p(λ).
The aim of Sect. 4.2 is to prove the following law of large numbers:

Theorem 4.3 Almost surely, limε↓0
1
ε

limt→∞ Nt

t
= λ(1 − λ)p(λ).

With the discussion at the beginning of Sect. 4.2, Theorem 1.2 follows.
The idea is the following: when ε is very small, second class particles do not interact

before they are very far from the left boundary and if a second class particle is far enough
from this boundary, then it survives with high probability. In other words, the effect on Nt

of interaction goes to 0 with ε. The first step in the proof will be to find estimates for the
process without interaction and to prove the theorem in this case. Next, we will show, for
the true process, that if two second class particles meet, they both survive with a probability
going to 1 as ε goes to 0; this implies the theorem.
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4.2.2 Distribution of the Process at Time τ e
i

In this section we prove that at each time τ e
i , the process η

inf

τe
i

has distribution νλ(.|η0(2)(1−
η0(1)) = 1). For that we need some preliminary results about the motion of a tagged particle
in a TASEP. It is convenient to regard the exclusion process as a Markov process (Xt , ηt ) on
the space V := {(x, η) ∈ Z

∗+ × X : η(x) = 1}, so that x is the position of the tagged particle
and η is the entire configuration. Consider the generator

�f (x,η) :=
∑

y∈Z
∗+,y �=x

η(y)(1 − η(y + 1))
[
f (x, ηy.y+1) − f (x, η)

]

+ (1 − η(x + 1))
[
f (x + 1, ηx.x+1) − f (x, η)

]
, (18)

for all cylindrical functions. Suppose that initially, the tagged particle is placed at some
point x ∈ Z

∗+ and other particles are placed according to the Bernoulli product measure with
density λ on Z

∗+\{x}. Then the system is stationary when viewed from the position of the
tagged particle. In other words, for all t ≥ 0,

E

⎡

⎣
∏

y∈A

ηt (φt (y))

⎤

⎦= λ|A|,

where A is a finite subset of Z
∗+ and

φt (y) :=
{

y if y < Xt,

y + 1 if y ≥ Xt .

Moreover, the random variable
∏

y∈A ηt (φt (y)) is independent of Xt for each t . Conse-
quently, it can be shown that Xt − X0 is a Poisson process with parameter 1 − λ (see [5]).

The following proposition will be useful to describe the process at a random time.

Proposition 4.4 Let Xt be the position of a tagged particle starting at site 0. The other
particles are initially distributed according to a Bernoulli product measure with density λ

on {1,2, . . .}. Let H0 := 0, and for i ≥ 1, let Hi := inf{t ≥ 0 : Xt = i}. Then for all i ≥ 0,
(ηHi

(XHi
+ x))x≥0 has the same distribution as η0.

Proof By the strong Markov property, it is sufficient to prove it for i = 1 since it is true for
i = 0 by hypothesis. Define X0

t := Xt and for i ≥ 1, Xi
t is the position of the i-th particle to

the right of Xt (Xi
t always exists if λ > 0 and if not the result is obvious). The result will

follow if we can prove that X1
H1

− X0
H1

, . . . ,XL
H1

− XL−1
H1

are i.i.d. random variables with
geometric distribution with parameter λ for all L ≥ 1. Since Xt − X0 is a Poisson process
with parameter 1 − λ, the process ξt (i) := Xi+1

t − Xi
t − 1, for i = 0, . . . ,L − 1, is a totally

asymmetric Zero Range process on {0, . . . ,L − 1} with generator

�f (ξ) :=
L−1∑

y=0

1ξ(y)≥1

[
f (ξy) − f (ξ)

]+ (1 − λ)
[
f (ξL) − f (ξ)

]
, (19)

where

ξy(z) :=
⎧
⎨

⎩

ξ(z) if z /∈ {y − 1, y},
ξ(y) − 1 if z = y,

ξ(y − 1) + 1 if z = y − 1.
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Let μ be the product measure on N
L such that μ{ξ : ξ(0) = k} = λ(1 − λ)k . μ is invariant

for ξ. and ξ0 ∼ μ. We also have

H1 = inf {t ≥ 0 : ξt−(0) = ξt (0) + 1} ,

i.e., H1 is the first time at which a particle leaves the system (from 0). We need to prove that
ξH1 has distribution μ. Let q(ξ, ζ ) be the rate for which (ξt )t≥0 goes from ξ to ζ , for every
ξ, ζ ∈ N

L, and let q(ξ) :=∑
ζ q(ξ, ζ ).

Fix a configuration γ ∈ N
L and let φ(ξ) := P[ξH1 = γ |ξ0 = ξ ]. Conditioning on the first

step we get:

φ(ξ) =
∑

ζ

q(ξ, ζ )

q(ξ)
1ζ(0)≥ξ(0)φ(ζ ) + q(ξ, γ )

q(ξ)
1γ=ξ0 . (20)

Moreover, since μ is invariant,
∫

�φ(ξ)dμ = 0, thus

∑

ξ,ζ

μ(ξ)q(ξ, ζ )φ(ζ ) =
∑

ξ,ζ

μ(ξ)q(ξ, ζ )φ(ξ) =
∑

ξ

μ(ξ)q(ξ)φ(ξ),

(20)=
∑

ξ,ζ

μ(ξ)q(ξ, ζ )1ζ(0)≥ξ(0)φ(ζ ) +
∑

ξ

μ(ξ)q(ξ, γ )1γ=ξ0 . (21)

But q(ξ, ζ )1ζ(0)<ξ(0) = 1 if ζ = ξ 0 and 0 otherwise, hence

∑

ξ

μ(ξ)φ(ξ 0)1ξ(0)≥1 =
∑

ξ

μ(ξ)q(ξ, γ )1γ=ξ0 ,

= μ(ξ : ξ 0 = γ ) = (1 − λ)μ(γ ). (22)

Finally, the left-hand side of (22) is equal to

(1 − λ)
∑

ξ

μ(ξ 0)φ(ξ 0)1ξ(0)≥1 = (1 − λ)

∫
φ(ξ)dμ,

which leads to P[ξH1 = γ ] = μ(γ ). �

Corollary 4.5 Consider the TASEP on Z
∗+ starting from νλ(.|η(2)(1 − η(1)) = 1). Let Hi

be the time at which the first particle created is at site i, for i ≥ 1. Then (ηHi
(i + x))x≥1 has

distribution νλ.

Proof By Proposition 4.4, it is sufficient to treat the case i = 1. The distance d between
the initial particle at site 2 and the new particle evolves as follow: it increases by 1 with
rate 1 − λ and decreases by 1 with rate λ until the new particle is at site 1. Hence, at this
time, d + 1 is distributed as a geometric random variable with parameter λ. Using again
Proposition 4.4, the configuration in front of the first particle has for distribution a Bernoulli
product measure with parameter λ. Therefore, it is the same for the new particle. �

Now we can give the distribution of η
inf

τe
i

.

Proposition 4.6 For each i ≥ 1, η
inf

τe
i

has distribution νλ(.|η0(2)(1 − η0(1)) = 1). In partic-

ular, it does not depend on ε.
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Proof We use the following compact notation for initial measures: νλ(.|η0(2)(1 −
η0(1)) = 1) will be denoted by 0 1νλ, and νλ(.|η0(1)) = 1) by 1νλ.

Let f be a bounded function on {0,1}Z
∗+ . Conditioning on the type of the first new particle

and using the above corollary with the Markov property we get:

E0 1νλ
[
f (θ2ητe

i
)
]

= ε

1 − λ + ε
E2 1νλ [

f (θ2η0)
]+ 1 − λ

1 − λ + ε
E1νλ

[
f (θ2ητe

i
)
]
.

The first expectation on the right-hand side is equal to 〈f 〉νλ and, using Proposition 4.4, the
second expectation is equal to E0 1νλ [f (θ2ητe

i
)]. Hence E0 1νλ [f (θ2ητe

i
)] = 〈f 〉νλ . �

4.2.3 Proof in the Case “Without Interaction”

Consider a family (N b
λ )0≤λ< 1

2
of Poisson point processes such that the parameter of N b

λ is λ

and for all 0 ≤ λ ≤ μ < 1
2 , N b

λ ⊂ N b
μ and N b

μ\N b
λ is independent of N b

λ . Take also a family
(ηλ

0)0≤λ< 1
2

of initial configurations such that ηλ
0(2)(1 − ηλ

0(1)) = 1 for all λ ∈ [0, 1
2 [, the dis-

tribution of ηλ
0 on {3,4, . . .} is νλ, and for all x ≥ 3 and all 0 ≤ λ ≤ μ < 1

2 , ηλ
0(x) ≤ η

μ

0 (x) al-
most surely. Then using the same Poisson point processes (Nx, x ≥ 1) for the bulk dynamic
we construct, as in Sect. 2, the family of TASEP (ηλ

. )0≤λ< 1
2

such that ηλ
. is a TASEP(λ) and

for all t ≥ 0 and all 0 ≤ λ ≤ μ < 1
2 , ηλ

t ≤ η
μ
t almost surely. At time 0 we add a second class

particle in site 1 to each of these processes and we denote by Xλ(t) the position at time t

of the particle in the process ηλ
. (with the convention Xλ(t) := 0 if the particle has left the

system). We define

Sλ := 1Xλ survives,

and

Hλ
x := inf {t ≥ 0 : Xλ(t) = x} ,

for all x ≥ 1.
Since we use the basic coupling, the following inequality holds almost surely:

Xλ(t) ≥ Xμ(t),

for all λ ≤ μ and all t ≥ 0. This easily implies that, for all λ ≤ μ and all x ≥ 1, Sλ ≥ Sμ

and Hλ
x ≤ Hμ

x . Furthermore, by definition of p(.), Sλ is a Bernoulli random variable with
parameter p(λ).

We start with an intuitive lemma which will be useful to propagate results from the
process without interaction to the true process.

Lemma 4.7 The function p : [0,1] → [0,1] is right-continuous.

Proof Since p(λ) = 0 for λ ≥ 1
2 , it is sufficient to prove it on [0, 1

2 [. Let 0 ≤ λ < 1
2 , ε ′ > 0

and 0 < c < 1
2 − λ. There exists some x ≥ 1 such that

P
[
Sλ+c = 0|Hλ+c

x < ∞]
< ε ′.

Indeed, if M := max{Xλ+c(t), t ≥ 0} then conditionally to {Sλ+c = 0}, M is almost surely
finite. Thus there exists x ≥ 1 such that

P
[
M ≥ x|Sλ+c = 0

]
< ε ′ p(λ + c)

1 − p(λ + c)
.
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Then, using

{Hλ+c
x < ∞} = {M ≥ x},

and

P [M ≥ x] ≥ P
[
Sλ+c = 1

]= p(λ + c),

this implies

P
[
Sλ+c = 0|Hλ+c

x < ∞]= P
[
M ≥ x|Sλ+c = 0

] P[Sλ+c = 0]
P[M ≥ x] < ε ′.

Furthermore for all ε ∈ [0, c],

P
[
Sλ+ε = 0|Hλ+ε

x < ∞] = P[Hλ+ε
x < ∞] − P[Sλ+ε = 1]

P[Hλ+ε
x < ∞] ,

= P[Sλ+ε = 0] − 1

P[Hλ+ε
x < ∞] + 1,

≤ P[Sλ+c = 0] − 1

P[Hλ+c
x < ∞] + 1,

= P
[
Sλ+c = 0|Hλ+c

x < ∞]
< ε ′. (23)

Now let t0 ≥ 0 such that

P
[

sup
t∈[0,t0]

Xλ(t) ≥ x|Hλ
x < ∞

]
> 1 − ε′. (24)

We can find 0 < c′ ≤ c such that

P

[
x∑

i=1

(ηλ+c′
0 (i) − ηλ

0(i)) = 0, (N b
λ+c′ \N b

λ ) ∩ [0, t0] = ∅
]

> 1 − ε ′. (25)

We define the events

B :=
{

x∑

i=1

(ηλ+c′
0 (i) − ηλ

0(i)) = 0, (N b
λ+c′ \N b

λ ) ∩ [0, t0] = ∅
}

,

and

A :=
{

sup
t∈[0,t0]

Xλ(t) ≥ x
}

∩ B.

By the Harris construction of the process, the event B is independent of {Hλ
x < ∞} and

{supt∈[0,t0] Xλ(t) ≥ x}. Moreover, A ⊂ {Hλ+c′
x < ∞}, thus using (24) and (25)

P
[
Hλ+c′

x < ∞|Hλ
x < ∞

]
≥ P

[
A|Hλ

x < ∞]
,

= P
[

sup
t∈[0,t0]

Xλ(t) ≥ x|Hλ
x < ∞

]
P [B] ,

≥ (1 − ε′)2 > 1 − 2ε ′. (26)
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Finally, with (23) and (26), we get

p(λ) − p(λ + c′) = P
[
Sλ+c′ = 0, Sλ = 1

]
,

= P
[
Sλ+c′ = 0, Sλ = 1,Hλ+c′

x < ∞
]
+ P

[
Sλ = 1,Hλ+c′

x = ∞
]
,

≤ P
[
Sλ+c′ = 0,Hλ+c′

x < ∞
]
+ P

[
Hλ

x < ∞,Hλ+c′
x = ∞

]
,

≤ P
[
Sλ+c′ = 0|Hλ+c′

x < ∞
]
+ P

[
Hλ+c′

x = ∞|Hλ
x < ∞

]
,

< 3ε ′. �

Now we prove Theorem 4.3 in the case without interaction.

Proposition 4.8 Nt

t
and N

inf
t

t
both have almost sure limits as t goes to infinity and

lim
ε→0

1

ε
lim
t→∞

N
inf
t

t
= λ(1 − λ)p(λ).

Proof We use the coupling of η. with the processes ξ inf
. and ξ sup

. defined in Sect. 4.2.3.
Recall that Nt is the number of 2-particles at time t which are not in the system at time

0 for the true process (ηt )t≥0, i.e., the number of Xi for which τ e
i ≤ t < τ s

i . N
inf
t and N

sup
t

have the same definition as Nt but for processes ξ inf
. and ξ sup

. respectively, or for particles
X

inf

i and X
sup

i respectively.
Let N̄t := �(N b

2 ∩ {t ≥ 0 : ηt (1) �= 1, ηt (2) = 1}). N̄t is the number of 2-particles (in the
process η.) which have entered the system between time 0 and time t , i.e., the number of Xi

for which τ e
i ≤ t .

The convergence to almost sure limits is a consequence of Proposition 3.4. Indeed, for
example Nt counts the number of elements of N b

2 for which ηt (1) �= 1 and ηt (2) = 1 minus
the number of elements of N b

1 for which ηt (1) = 2. Furthermore, by Proposition 3.4, N̄t /t

converges almost surely to λ(1 − λ)ε.
We denote by (tn)n≥1 the successive times at which the N̄tn -th 2-particle of the true

process is exactly the n-th particle which will survive. Then:

N
inf
tn

tn
= 1

tn

N̄tn∑

i=1

S
inf

i = n

tn
.

Thus if nt := sup{n ≥ 1 : tn ≤ t} then, since tn/n converges almost surely to
(limt→∞ N

inf
t /t)−1, we almost surely have:

lim
t→∞

nt − N
inf
t

t
= 0. (27)

On the other hand, nt is exactly the number of 2-particles which are in the system at time t

and which will survive, i.e., nt =∑N̄t

i=1 S
inf

i almost surely. Hence:

lim
t→∞

1

t

N̄t∑

i=1

S
inf

i = lim
t→∞

N
inf
t

t
, a.s.



1090 N. Sonigo

Next we compute the limit of 1/t
∑N̄t

i=1 S
inf

i in expectation. Let ε ′ > 0 and

τ := inf

{
t ≥ 0 : ∀s ≥ t,

∣∣∣∣
N̄t

t
− λ(1 − λ)ε

∣∣∣∣< ε ′
}

.

τ is almost surely finite and, using E[Sinf

i ] = p(λ),

E

⎡

⎣1

t

N̄t∑

i=1

S
inf

i

⎤

⎦≥ 1

t

�(λ(1−λ)ε−ε′)t�∑

i=1

E
[
S

inf

i 1τ≤t

]
,

≥ �(λ(1 − λ)ε − ε′)t�
t

p(λ) − 1

t

�(λ(1−λ)ε−ε′)t�∑

i=1

E
[
S

inf

i 1τ>t

]
.

Since S
inf

i is bounded by 1

E

⎡

⎣1

t

N̄t∑

i=1

S
inf

i

⎤

⎦≥ �(λ(1 − λ)ε − ε′)t�
t

(p(λ) − P [τ > t]).

Let t go to infinity, then ε′ go to 0:

lim
t→∞

1

t

N̄t∑

i=1

S
inf

i ≥ λ(1 − λ)p(λ)ε.

On the other hand

E

⎡

⎣1

t

N̄t∑

i=1

S
inf

i 1τ≤t

⎤

⎦≤ 1

t

�(λ(1−λ)ε+ε′)t�∑

i=1

E
[
S

inf

i 1τ≤t

]
,

≤ �(λ(1 − λ)ε + ε′)t�
t

p(λ),

which gives the reverse inequality letting t go to infinity and ε′ go to 0. Finally

lim
t→∞

1

t

N̄t∑

i=1

S
inf

i = lim
t→∞

N
inf
t

t
= λ(1 − λ)p(λ)ε.

�

4.2.4 Interaction Implies Survival

The following lemma states that if a second class particle goes far enough, then it survives
with high probability.

Lemma 4.9 For all ε′ > 0, there exists x0 (depending only on λ and ε′) such that if c is
small enough, then for all i ≥ 1

P
[
τ s
i < ∞,∃t ≥ 0,Xi(t) ≥ x0

]
< ε ′.
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Proof We start by proving the same result for Xinf . Let

M := sup
{
X

inf

i (t), t ≥ 0
}

.

Conditionally on {τ s,inf

i < ∞}, M is almost surely finite, thus we can choose x0 such that

P
[
M ≥ x0|τ s,inf

i < ∞
]

<
ε ′

2
.

Hence

P
[
τ

s,inf

i < ∞,∃t ≥ 0,X
inf

i (t) ≥ x0

]
= P

[
M ≥ x0|τ s,inf

i < ∞
]

P
[
τ

s,inf

i < ∞
]
,

<
ε ′

2
.

Furthermore, since the law of X
inf

i is the same for all i ≥ 1 (because they enter in the same
environment), we can choose the same x0 for all i ≥ 1. Then we have, using Lemma 4.7:

P
[
τ s
i < ∞,∃t ≥ 0,Xi(t) ≥ x0

] ≤ P
[
τ

s,inf

i < ∞,∃t ≥ 0,X
inf

i (t) ≥ x0

]
+ P

[
Si �= S

inf

i

]
,

<
ε ′

2
+ p(λ) − p(λ + c),

< ε ′,

if c is small enough. �

For x ≥ 1, let Hx := inf{t ≥ 0 : Xi(t) = x} (we omit the dependence on i in the notation
because there will be no possible confusion). We can deduce from this lemma a stronger
form of the same estimate:

Corollary 4.10 Let x ≥ 1. For all ε ′ > 0, there exists x1 depending only on λ, ε′ and x such
that if c is small enough, then for all i ≥ 1

P
[
Hx1 < ∞,∃t ≥ Hx1 ,Xi(t) ≤ x

]
< ε ′.

Proof We will use the same method as in Lemma 4.1. Let Et be the following event on the
Poisson point processes of the Harris system during the time space [t, t + 1]:
• one first class particle enters site 1 and moves to site x;
• then one first class particle enters and moves to site x − 1;
• we continue in the same way until x first class particles have entered the system and they

have moved until that the box {1, . . . , x} is full;
• finally we impose that Nx ∩ [t, t + 1] = ∅.

Then qx(λ) := P[Et ] depends only on λ and x, is positive and, under this event, every second
class particle which was in the box {1, . . . , x} at time t has left the system at time t + 1.

Now let x1 be given by Lemma 4.9 such that

P
[
τ s
i < ∞,∃t ≥ 0,Xi(t) ≥ x1

]
< ε ′qx(λ),
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and define H+
x := inf{t ≥ Hx1 : Xi(t) = x}. Then

P
[
τ s
i < ∞|H+

x < ∞]≥ qx(λ).

This implies

P
[
Hx1 < ∞,∃t ≥ Hx1 ,Xi(t) ≤ x

]= P
[
H+

x < ∞]= P[τ s
i < ∞,H+

x < ∞]
P[τ s

i < ∞|H+
x < ∞] ,

< ε ′. �

The next lemma states that if we fix x ≥ 1, then the probability that two second class
particles meet in the box {1, . . . , x} goes to 0 with ε.

Lemma 4.11 Let τi+1→i be the first time at which the (i + 1)-th second class particle tries
to jump on the site occupied by the i-th second class particle. Then for all fixed x ≥ 1,

P
[
τi+1→i < ∞,Xi(τi+1→i ) ≤ x

]−→
ε→0

0, uniformly in i.

Proof Fix ε ′ > 0 and let x1 and 0 < c0 < 1
2 − λ be given by Corollary 4.10 such that

P[Hx1 < ∞,∃t ≥ Hx1 ,Xi(t) ≤ x] < ε ′, for all ε ≤ c0. (28)

Then x1 and c0 depend only on λ and ε′ (and x). We have:

P[∃s ≥ t,Xi(s) ∈ {1, . . . , x}] ≤ P[∃s ≥ t,Xi(s) ∈ {1, . . . , x}, Hx1 ≤ t]
+ P[Xi(t) ≥ 1,Hx1 > t],

≤ P[Hx1 < ∞,∃s ≥ Hx1 ,Xi(s) ≤ x]
+ P[Xi(s) ∈ {1, . . . , x1}, ∀s ∈ [0, t]]. (29)

As in Lemma 4.1, we have

P [Xi(s) ∈ {1, . . . , x1} ,∀s ∈ [0, t + 1]] ≤(1 − qx1(λ))P [Xi(s) ∈ {1, . . . , x1} ,∀s ∈ [0, t]] ,

which implies the existence of a constant C > 0 depending only on λ and ε′ such that

P [Xi(s) ∈ {1, . . . , x1} , ∀s ∈ [0, t]] ≤ e−Ct .

Finally, using (28) and (29), there exists some deterministic t0 ≥ 0, depending only on λ and
ε ′, such that

P [∃s ≥ t,Xi(s) ∈ {1, . . . , x}] < 2ε ′,

for all t ≥ t0 and ε ≤ c0.
Besides, if we define σ as the time elapsed between τ e

i and the first jump time of N b
2

greater than τ e
i , then σ is an exponential random variable with parameter ε independent of

the trajectory of Xi . As a consequence, we have

P[τi+1→i < ∞,Xi(τi+1→i ) ≤ x] ≤ P[∃t ≥ σ,Xi(t) ∈ {1, . . . , x}],
≤ P[∃t ≥ σ,Xi(t) ∈ {1, . . . , x}, σ > t0] + P[σ ≤ t0],
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< 2ε ′ + 1 − e−εt0 .

Finally we have P[τi+1→i < ∞,Xi(τi+1→i ) ≤ x] −→
ε→0

0 uniformly in i. �

Now we are able to prove that when a second class particle meets another one, both
survive with a probability going to 1 as ε goes to 0.

Corollary 4.12

P
[
τi+1→i < ∞, τ s

i+1 < ∞]−→
ε→0

0, uniformly in i. (30)

Proof Fix ε ′ > 0 and let x0 be given by Lemma 4.9. We have

P
[
τi+1→i < ∞, τ s

i+1 < ∞] = P
[
τi+1→i < ∞, τ s

i+1 < ∞,Xi(τi+1→i ) ≤ x0

]

+ P
[
τi+1→i < ∞, τ s

i+1 < ∞,Xi+1(τi+1→i ) ≥ x0

]
,

≤ P
[
τi+1→i < ∞,Xi(τi+1→i ) ≤ x0

]

+ P
[
τ s
i+1 < ∞,∃t ≥ 0,Xi+1(t) ≥ x0

]
,

< 2ε ′,

if ε is small enough. �

4.2.5 The Proof of Theorem 4.3

Fix ε ′ > 0 and use (30) to find ε > 0 small enough to have

P
[
τi+1→i < ∞, τ s

i+1 < ∞]
< ε ′.

We have already seen that both Nt/t and N
inf
t /t converge to almost sure limits and that

1
ε

limt→∞ N
inf
t /t converges almost surely to λ(1 − λ)p(λ) as ε goes to 0. Recall the de-

finition of N̄t at the beginning of the proof of Proposition 4.8. We have limt→∞ N̄t /t =
λ(1 − λ)ε. Thus if we define

τ := inf

{
t ≥ 0 : ∀s ≥ t,

N̄s

s
≤ (λ(1 − λ) + 1)ε

}
,

then τ is almost surely finite and N
inf
t − Nt =∑N̄t

i=1 1
S

inf
i

(t)=1,Si (t)=0
which implies

E

[
N

inf
t − Nt

t
1τ≤t

]
≤ 1

t

�(λ(1−λ)+1)εt�∑

i=1

P
[
S

inf

i (t) = 1, Si(t) = 0, τ ≤ t
]
,

≤ 1

t

�(λ(1−λ)+1)εt�+1∑

i=2

P
[
τi→i−1 < ∞, τ s

i < ∞]
,

≤ �(λ(1 − λ) + 1)εt� + 1

t
ε ′,
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and, by dominated convergence theorem, the left-hand side of the above inequality con-
verges to limt→∞ N

inf
t /t − limt→∞ Nt/t as t goes to infinity. Hence, dividing by ε, we get

0 ≤ 1

ε
lim
t→∞

N
inf
t

t
− 1

ε
lim
t→∞

Nt

t
≤ (λ(1 − λ) + 1)ε′.

Since ε ′ was arbitrary we can conclude.
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